

2021 年仲恺农业工程学院普通专升本考试大纲 生物工程

第一部分《生物化学》

第一章 糖类物质

- 糖的定义、功能及分类
 掌握糖的定义(化学本质)、生理功能及分类。
- 2. 单糖

开链结构 [差向异构体、镜像对映体(D、L型)]、环状结构(α和β型、吡喃糖、呋喃糖、Haworth 式)

单糖的物理性质(溶解度、甜度、旋光性和变旋性)、单糖的化学性质(单糖的氧化、单糖的还原、糖苷键的生成、脱水作用、与氨基反应)

3. 寡糖

常见的二糖(蔗糖、麦芽糖、乳糖等)分子组成、结构和理化性质;还原糖、非还原糖、转化糖、乳糖不耐症

4. 多糖

多糖、同多糖、杂多糖的概念;淀粉、糖<mark>原的结构与性质:(直链淀粉、支链淀粉)、糊化、液化、老化:糊精的呈色反应、糖原和纤维素的结构</mark>

第二章 脂类物质

1. 脂类

脂类化合物的分类、结构、组成;三酰甘油的化学性质(水解和皂化、氢化和卤化、氧化、酸败、乙酰化);脂肪酸的命名、结构、性质;磷脂、萜类与胆固醇、脂蛋白的结构及性质

2. 生物膜

生物膜的组成和结构特点(膜脂和膜蛋白在脂双层两侧分布的不对称性、生物膜的流动性、生物膜的结构模型等); 膜的结构与功能的关系; 膜泡运输、穿膜运输、被动运输、主动运输的原理及特点。

第三章 氨基酸与蛋白质

1. 蛋白质的化学组成与分类

蛋白质的化学组成、蛋白质的含氮量、蛋白质的基本组成单位、蛋白质分类

2. 氨基酸与肽

氨基酸的基本结构、分类(非极性、极性不带电荷、酸性、碱性)、氨基酸的物理性质(色泽、溶解度、熔点、味道、紫外吸收特性)、氨基酸的化学性质(等电点、与甲醛反应、与亚硝酸反应、茚三酮反应、桑

格反应、艾德曼反应)及其应用。

肽的结构与命名、肽键与太平面、多肽的性质(水解、颜色反应)

3. 蛋白质的结构

蛋白质的一级结构、二级结构(α 螺旋、 β 折叠、 β 转角等)、超二级结构、三级结构、四级结构;蛋白质结构与功能的关系

4. 蛋白质的理化性质

蛋白质的分子量、溶解度、大小和形状、透析、胶体性质、两性解离和等电点、蛋白质的电泳、蛋白质的沉淀(盐析、有机溶剂

5. 蛋白质的分离纯化

蛋白质分离纯化原理(分子大小、溶解度、酸碱性等)及其常用方法。

第四章 酶和维生素

1. 酶通论

概念、催化作用特点、酶的化学本质、命名与分类。

2. 酶促反应动力学

酶反应速度的测定、酶活力概念和单位、酶的比活力、米氏方程、米氏常数; pH、温度、酶浓度对酶促反应速度的影响;激活剂、抑制剂对酶促反应速度的影响、可逆抑制作用(竞争性抑制、非竞争性抑制、反竞争性抑制)、不可逆抑制作用。

3. 酶的作用机制和酶的调节

酶的催化作用机理、假说和酶原激活。

4. 酶活性的调节

别构酶的概念、结合部位、别构酶的活性调节、同工酶的概念

5. 维生素

水溶性维生素、脂溶性维生素、维生素的生理功能、维生素辅助酶催化主要通过协助基团转移起作用。

第五章 核酸

1. 核苷酸

核苷酸的组成(戊糖、碱基和磷酸)、嘌呤碱、嘧啶碱、核苷酸的碱基构型与紫外吸收

2. DNA

DNA 的碱基组成、一级结构、二级结构、三级结构(核小体)、DNA 的生物学功能。

3. RNA

RNA 的结构、RNA 的类型、rRNA 分类和功能、tRNA 的结构、功能, mRNA 的结构和功能。

4. 核酸的性质

核酸的理化性质(溶解性质、两性解离、水解、分子大小、粘度、紫外吸收、沉降特性)、核酸的凝胶

电泳、核酸的变性、复性与杂交。

第六章 生物氧化

1. 生物氧化概述

生物氧化特点、生物氧化方式(脱氢、加氧、脱电子)、 CO_2 的生成(直接脱羧、氧化脱羧)、生物氧化的酶(氧化酶、脱氢酶)。

2. 生物能学

高能化合物的概念和类型、ATP的结构特点及其对能量转化的重要意义、磷酸原、能荷的概念及其生理意义。

ATP 的生成方式(底物水平磷酸化、氧化磷酸化、氧化磷酸化的偶联机制及影响因素)、生物体内 ATP 的循环过程概况、磷酸原及其作用。

3. 线粒体电子传递链

呼吸链及其存在形式、主要组成成分、线粒体内两条重要呼吸链(NADH 氧化呼吸链、琥珀酸氧化呼吸链)、线粒体外 NADH 的氧化(α —磷酸甘油穿梭作用、苹果酸—天冬氨酸穿梭作用)。

第七章 糖类代谢

1. 糖类的消化吸收

消化过程、降解产物、吸收过程。

2. 糖的无氧分解

糖酵解的含义、反应过程(消耗 ATP、生成 ATP、产生 NADH、底物水平磷酸化)、糖酵解能量核算和生理意义;糖酵解的调节,限速酶(磷酸果糖激酶、己糖激酶、丙酮酸激酶的调节)。

果糖、乳糖和甘露糖进入糖酵解的途径; 丙酮酸的无氧转变、丙酮酸的去路。

3. 糖的有氧分解

丙酮酸氧化脱羧;三羧酸循环反应过程(消耗 ATP、生成 ATP、产生 NADH、FADH₂、GTP、底物水平磷酸化、脱羧)、有氧氧化生理意义、有氧氧化的调节方式;三羧酸循环的回补反应。

4. 磷酸戊糖途径

反应过程(氧化阶段、非氧化阶段、产生 NADPH、CO₂、重要产物)、生理意义

5. 乙醛酸、糖醛酸途径

乙醛酸途径的起点、终点、生理意义、糖醛酸途径的起始点、意义。

6. 糖异生

糖异生的概念、发生部位;三步逆转步骤、草酰乙酸的转运;糖异生的调节;生理意义。

7. 糖原的分解与合成

糖原分解代谢步骤、酶、合成代谢中葡萄糖活化形式,合成代谢的酶、糖原代谢调节(共价调节、别构调节)、糖原引物。

8. 其他糖的合成和糖代谢各途径间的联系

淀粉、蔗糖和乳糖的合成原料、催化酶、合成途径、糖代谢各途径联系的中间代谢物。

第八章 脂类代谢

1. 食品中的脂类及其消化、吸收和转运

脂类分类、消化过程、脂肪酶、胆固醇酯酶、磷脂酶、脂类转运(脂蛋白——乳糜微粒、极低、中、低、高密度脂蛋白)。

2. 脂类的分解代谢

三酰甘油水解、甘油转化;脂肪酸的活化和转运;饱和脂肪酸的 β 氧化(发生部位、四步骤、耗能产能情况);不饱和脂肪酸的氧化;脂肪酸的 α 氧化和 ω 氧化:酮体代谢的原理和意义。

3. 脂类的合成代谢

脂肪酸的合成(乙酰 CoA 的转运、丙二酸单酰 CoA 的生成、脂肪酸合成酶系及脂酰基载体蛋白、合成步骤)、脂肪酸链延长的地点、不饱和脂肪酸的合成概况(单不饱和脂肪酸和多不饱和脂肪酸的合成)、 三酰甘油的合成

4. 磷脂代谢和人体内胆固醇的转变

卵磷脂的降解过程和磷脂酶、卵磷脂的从头合成和补救合成途径;人体内胆固醇的转变形式(胆汁酸、 类固醇激素和维生素 D3)、胆固醇从头合成的原料及其昼夜节律。

第九章 蛋白质降解与氨基酸代谢

1. 蛋白质降解

了解食物蛋白质的摄取与水解; 真核细胞中蛋白质的降解途径---溶酶体系统与依赖 ATP 的泛素途径。

2. 氨基酸的降解与转化

氨基酸的转氨基、脱氨基作用、联合脱氨基作用;氨的转运、氨的代谢(尿素循环);氨基酸碳骨架的 去路(与三羧酸循环等途径的联系)、生酮氨基酸、生糖氨基酸。不同生物中氨的排泄形式。

氨基酸的脱羧基作用、一碳单位、一碳单位载体; 个别氨基酸的代谢。

3.氨基酸生物合成

氨基酸合成的共同特点、氨基酸合成的起始物分族。氨的同化,氨基酸的生物合成特点。

第十章 核苷酸代谢

1. 核苷酸的分解代谢

核酸的降解、核酸酶、限制性内切酶、核苷酸的降解、嘌呤碱的分解、嘧啶碱的分解。尿酸过高与痛风

2. 核苷酸的合成代谢

嘌呤核糖核苷酸的合成(从头合成途径、补救合成途径)、嘧啶核糖核苷酸的合成(从头合成途径、补

救合成途径)、脱氧核糖核苷酸的合成(核糖核苷酸还原酶、硫氧还蛋白及其还原酶)、核苷二磷酸和核苷 三磷酸的合成。

第十一章 核酸及蛋白质的生物合成

1. DNA 的生物合成

半保留复制的涵义、实验依据、意义; DNA 复制的起点和方式; DNA 复制的特点及其反应体系, 诸如 DNA 聚合酶、引物、DNA 连接酶、半不连续复制等、新链延伸方向; 复制的起始、延伸和终止; DNA 的体外合成: 多聚酶链式反应 (PCR) 的基本原理与反应体系; DNA 的损伤及修复。

2. RNA 的生物合成

RNA 转录的涵义;原核生物中 RNA 合成的三个阶段的特点 (模板、底物、合成方向、酶、终止子) 全酶、核心酶;真核生物中 RNA 合成的特点、转录因子等。

3. 蛋白质的生物合成

遗传密码的涵义和特点、遗传密码的阅读(开放读码框)、起始密码、终止密码; tRNA、rRNA 和 mRNA 在蛋白质合成过程中的作用、氨基酸的活化、核糖体的结构和功能、原核生物蛋白质的合成的主要过程; 真核生物蛋白质的合成、蛋白质翻译后加工方式。

参考书目:

《生物化学》王永敏、姜华主编,中国轻工业出版社,2017年2月

第二部分《微生物学教程》

第一章 绪论

了解微生物学的基本概念,包括的生物种类;了解微生物发展历史,掌握每个阶段代表科学家的主要成就;微生物的五大共性;微生物学与人类进步的关系,微生物学的主要分支学科及在微生物学中最为常用、最为基本的实验技术。

第二章 原核生物

第一节.细菌

细菌的形态大小;细菌的细胞构造及生理功能;细菌的繁殖及群体形态(菌落、菌苔、菌膜);常见细菌类群的代表。

第二节.放线菌

放线菌的分布; 放线菌的形态与细胞结构; 放线菌的繁殖及群体形态; 放线菌的代表属。

第三章: 真核微生物

第一节 真核生物概述

真核生物与原核生物的比较; 真核微生物的主要类群; 真核生物细胞构造及生理功能。

第二节 酵母菌

酵母菌的特点,细胞的形态和构造;酵母菌的菌落特征;酵母菌的繁殖方式和三种生活史;酵母菌的

菌落特征等。

第三节 丝状真菌--霉菌

霉菌的形态结构;霉菌的菌丝体及各种分化形式;霉菌的繁殖方式及菌落特征;霉菌的代表属;四大 类微生物的细胞形态和菌落特征的比较等。

第四章 病毒和亚病毒因子

第一节 病毒的形态结构

病毒的特点;病毒的构造、对称体制及群体形态;病毒的分类及命名方法;烈性噬菌体的繁殖方式、 效价测定及生长曲线;温和噬菌体的溶源性现象等。

第二节 亚病毒因子

各种亚病毒因子如类病毒、拟病毒、卫星病毒等结构特点,朊病毒的基本特点等。

第五章 微生物的营养

第一节 微生物细胞的化学组成、营养要素

不同微生物的细胞化学组成的差异;微生物需要的六大营养要素及相关概念。

第二节 微生物的营养类型

微生物各种营养类型分类标准,光能无机营养型、光能有机营养型、化能无机营养型、化能有机营养型的各自特点。

第三节 营养物质进入细胞的方式

营养物质进入细胞的四种方式即单纯扩散、促进扩散、主动运输和基团转位的各自特点。

第四节 培养基

配制培养基的基本原则和设计方法;培养基的分类;常见培养基的组成分析等。

第六章 微生物的新陈代谢

第一节 化能异样微生物的生物氧化和产能

底物脱氢的四种途径——EMP, HMP, ED, TCA 循环; 递氢和受氢的几种不同的方式等。

第二节 自养微生物的产 ATP 和还原力的方式

化能自养微生物产能方式及特点;光能微生物进行光合作用的三种方式及各自特点等。

第三节自养微生物的二氧化碳的固定

自养微生物二氧化碳固定化的四种代谢途径即 Calvin 循环途径,厌氧乙酰一CoA 途径,逆向 TCA 循环, 羟基丙酸途径。

第四节 生物固氮

固氮微生物的类型,生物固氮的主要机制及六大要素,好氧菌固氮酶避氧机制。

第五节 肽聚糖的生物合成

微生物肽聚糖生物合成的机制及青霉素的抑菌机理等

第七章 微生物的生长及其控制

第一节 微生物生长的测定

测定微生物生长的各种方法

第二节 微生物的生长规律

单细胞生物的典型生长曲线及各个阶段的主要特点,微生物的个体生长与同步生长,微生物的连续培养和高密度培养等概念特点。

第三节 影响微生物生长主要因素

影响微生物生长的各种因素。

第四节 有害微生物的防控

有害微生物防控的各种概念,高温灭菌主要分类及特点,影响因素等,化学杀菌剂、消毒剂和治疗剂等相关概念及特点等。

第八章 微生物的遗传和变异

第一节遗传变异的物质基础

遗传变异等相关概念的区分,证明核酸是遗传变异<mark>物质基础的经典实验,遗传物质在细胞中的存在方式,几种典型质粒的特点等</mark>

第二节 基因突变与诱变育种

基因突变相关概念及突变类型,基因突变的特点及自发和不对应型的试验证明,基因突变的常见机制与修复机理,诱变育种的理论基础,原则及过程;突变株常见的筛选方法及原理。

第三节基因重组

原核微生物的基因重组的特点,主要形式及机制;真核微生物基因重组的主要形式等。

第五节菌种的衰退、复壮和保藏

菌种的衰退、复壮等概念;菌种的保藏理性条件及常见的保藏方式等

第九章 微生物的分类

第一节 微生物的分类单位与命名

生物通用的分类单位,种的概念:微生物学名的命名方法等。

第二节 微生物在生物界的地位

生物的五界系统、三域学说及其发展

参考书目:

《微生物学教程》(第三版),周德庆主编,高等教育出版社,2011年4月